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S UNIARY

The downward motion of small particles in an isothermal turbulence

free atmosphere has been studied for the case of variable diifusion

coefficient, utilizing two models. In the first of these, the diffusion

coefficient has been taken as an exponential function of altitude while

itt the second, Lhe variation has been assumed to be parabolic In the

exponential model an analytic solution for simultaneous diffusion in the

vertical and horizontal directions has been obtained;while for the

parabolic model, an analytic solution for vertical motion only has been

obtained. The calculations, which have been restricted to tle exponential

case show the development of a profile of constant shape, all points of

which move with the same velocity, independent of the mass of the particles.

These results, which are derivable from our solution, are in agreement with

the numerical work of B;,nister and Davis- It is also shown that the

qualitative nature of the results is independent of the initial distributiuo



CALCUIAT ION OF THE DiFFUS jONk OF SMALL PART*Cl.ES
IN A NON-UNI1FORM ATMOSPHERE

by Milton M Klein) and Kwang Ni

1. Int rodact ion

In -- pct years h pucgcaris c f c!hcr 'cal ese n n cear

explosirs have stievilaicd interest in "he pe- zra1 pr-hleir of -diff :s ive

motion of particles in the atmospherc- (.enlEU1 analytic Sol :ticos " -C-

not available because of the- \ariatic- cf densitv tanc, hE-'ce diff ision

coefficient) in the atmosphere F-urther ccmplcxity is added to the

problem because of the general downward drift dte to th-e r~i~tca

field. If the re2;on of i ntc-re st i s net to hr 1 k thei di ff ; j "

coefficient- may be considered constant; and, fc- thc case -f nepl-ieille

drift velocity, standard methcds of solition may be applied ihe

effect of a dri ft velocity ha 3 been taken into acco :nt f-,% the case of

censtant difflision and constanrt drift vol eci tv E v CliaicleskL -s ac So

a change of variable t echniq ic t.c, ro'Juce t1' In 'lM t -' -1 St 3-'(' rd C'>c

i n heat condluc t i or 3)

An investisat ion of t he descun-t e-f small !D- ntIe h'rI e S'

exponeit ial atmospherc by rooa-s c-f nt.Pr;- il so' (-.' f t h- Rce?~

eq-ia t i ons has recentlIy Y'r - ad c fIv Ean i StLe- -3 -d Da'.J S IhF St -d-;

--as; ivmri t ieu i--e motLion- in the vert ical pia'o J-c i- 1-r st'-ikinL

resujlts of the-ir work is the change in a shecr* timec intE-uai.3 -1 h

initial densit-y distributic- into a constant pr-file as il dEsc "ds

through the atmosphere An analytic sri ition. mctivated l- this rcsilt

has been developed Ly -0 ranoiow (5 n tne turin -; a3n i-itinitF se-ies -t



associated Laguen, polynomials whose coefficients are obtairnable from

integrals over the initial distribution

Because of the general interest in the problem of atmospheric

diffusion and the scarcity of detailed solutions when the iton uniformity

of the atmosphere is taken into account, we have studied the problem in

detail for two models, In one of these we have taken the diffusion

coefficient as an exponential function of altLtudc whilC Ln the other

one the variation is parabolic. For the sake of simplicity, the atmos-

phere has been assumed isothermal. The exponentiai mode! is chosen in

accordance with the approximate exponential variation of density of

the atmosphere with altitude and is convenient for Tiathematical analysis

when considering an infinite or semi infinite region The parabolic

model, while it can be used for a semi-infinite space, is more useful

for a fini:e region where the analysis for the exponential model becomes

awkward and inconvenient

We shall restrict oujrselves in the present analysls to the case of

molecular diffusion and therefore will not considei i.e any detail the

effect of turbulence- Since the atmosphere is reasonably turbuiencE

free down to altitudes of about 100 kin, we may assua-te our calculations

are applicable down to 100 km- Any further cxtersion below this altitude

should be examined with extreme care, The effect of n turbulent layer

unon the particle distribution may be analyzed oy methods similar to the

one presented inRefer>ce 4.
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2. Analysis and Formulation of Model

We consider a non-uniform atmosphere in which the diffusion

coefficient D is a known function of altitude z A foreign gas

deposited in the atmosphere will spread in all directions due to

diffusion and will drift downward under the act tri of Lhe gravitational

field- The drift velocity will be controlled bv the ir-_quuncy with

which the gas molecules collide with the Ptmosphere- The basic

diffusion equation and the dependence of the drift velocity upon the

collision frequency may be obtained from the Boltzann Equation

-i- 'ft± -I 6f(

-" 3c t e

where f is the distribution func. ion for the foreign gas, c is he

particle velocity, r the position vector and F the external force per

unit mass. The collision term T t is the effect upon f due to

the internal collisions among the gas particles while 04fK is,!ext i

the effect due to collisions between the gas and ambient air particles

Since the gas particlP density becomes quite low after a short period

of time, we shall neglect the self-collision term int- T

our case, the only external force is the gravitational field which acts

in the negative z direction so that Equation (l) may be written in the

form

f c -- c60
-) c 3  t ext (2)

wbere c3 is the .omponent of the velocity

4



We now obtain our macroscopic equaticns of motion by multiplying

Equation (2) by an appropriate power of the velocity and integrating

over the velocity space. For our purposes it will- be sufficient to take

the zeroth and first powers of the velocity We then obtain

gc = " dc (3)
\L dext.

-c dc-:Ic gt' r d c cC c (4)
.r/ 3 t

In Equation (3), since integration over velocity is independent of time

and space, we may write

If d c - / F d c =

c d 7 c fdc 7 ( v)
Cr

f afLd d c d c d c 3

2c3  cc 3 d c3  1 d c2 [i 0

3

where the particle density' and the macroscopic velocity v are defined

by

J- 1 f d f fc' d

Since the velocity distribution vanishes at the limits, the term in

gives zero contribution. The collision integral in Equation (3) may be

shown to vanish when integrated over the velocity space The macroscopic

form of Equation (3) therefore gives the usual equation of continuity

t , -(6)

5



in Equation (4) it is convenient to consider a typical compoaun.c' z ay

c and obtain

f 7 V-f
c d = -

f 3t a

c- d L - (c' t d c

V f d c

Jc 3 c d c = d c 1 J d c2 ,I c 3 c dc3

for a # 3 the integral over d c3 gives

CM F
r c d c c fl 0j B3  3 L _

For = 3 we geL

d c 3  c - f d c

and

3  d c =- d c= (7)

c3 3Jf

We may, therefore, write Equation (4) in the form

-- dv)+ /" c fd

cf c g 3 ext, C (8)

Because of the complicated form of EquaLion (8), the direct solution of

our problem by means of Equations (6) and (8) is a formidable task. We

shall, therefore, utilize Equation (8) to give us an approximate expression

for the drift velocity and then solve Equation (6). In Equation (8) we

6



note that is proportioned to f and te the collision frequencyn o t e th t - e x t .

which is a function of a velocity and position- The dependence upon

the velocity distribution is quite weak ( 6 ) and may be ignored here; we

may, therefore, write

r AAr

tg) ext.cO a ~~ (r, v)f dc

= f c, d c

where is the average value of the collision frequency over the velocity

space. The velocity v is the sum of the diffusion velocity v.0 and the

drift velocity v Since, the drift velocity goes to zero for g = 0

We may identify the drift velocity term on the right-hand sidc of

Equation (8) with the term containing g on the left side. We therefore

have

g 9)3  (g

from which

v a- 
(10)

oeg v

We now express the velocity v in Equation (6) as the sum of the

diffusion velocity vD and the drift velocity v and write

g



where, for our case, v has only a z component v3, given by Equation (I0j-

The diffusion velocity v D is given by Fick's law( 7 )

vDnI = -D Vn (12)

where D is the diffusion coefficient. We may, therefore, write

Equation (11) in the form

- 7 (D V 4- V ~lv) 0 (13)

8



3 Analysis of the Diffusion Equation

The solution of Equation (13) for the general three-dimensional

case is quite difficult. It is possible to separate Equation (13) into

two equations; one governing the motion in the horizontal plane and

the other governing the motion in the vertical plane, provided we assume

that the coupling betwcen the two motions is weak The significance of

this approximation and an interprctation of the resulting solutions will

be presented later. A convenient and useful variable whose differential

equation dcscribing the vertical motion is not too complicated is

provided by the particle density integrated with respect to x and y,

i.e., the number of particles per unit z length To obtain this equation

we first express Equation (13) in cartesian form and, noting that v is
g

a function of z only, obtain

S(D A - -- (D () ( v4)) = 0 (14)
at X A y by az az g

Integrating with respect to x and y from -0 to -- and noting that

% and 2M vanish at the limits, we obtain

6t (D - - Vgnl) = 0 (15)

where

is the number of particles per unit z length. We now look for a solution

where n I (Z) describes the vertical motion and write

9



(x,y,z) n (z) n2 (xy,z) ( b)

where, since we are assuming iveak coupling, n2 has only a weak z

dependence- Substituting Equation (16) in Equation (13) yields

n n 2 2 a1 = (D V n. V , ) + ' (D ni V  n2

+ Vn 2  (D V nI  vgn I ) (17)

which, by virtue of Equation (15), can be simplified to

n - V (D n1  n2 ) + V n2 (D 7 01 gn0), (18)

Since D and v are functions of z only, we may write Equation (18) in theg

scaler form

nlan2 a3 n2 an 1 an 2 2 2 a2 n2 /

t - (Dn I- -z) + ID - - vgnl) Q - + On I x 2 +-7 2 (19)

In view of the assumption of weak coupling, we may neglect the terms

involving the derivatives of n2 with respect to z to obtain

zn2 = n2 2 (20)
t =D x2  2y

Since D is a function of z only, Equation (20) represents the diffusion

of material in the x-y plane for a constant diffusion coefficient whose

valuc is determined by the particular altitude at which the diffusion

is taking place. A solution of Equation (20) for the case of a source

10



in the X-y plane is giver, by (8 )

r 2

whr 
2 4-.Dt 4Dt

is the source strci-.gth~ Because of the dvfiintion of n (Equat ion (16).

thc valuL Of N for out case equals unity-

At thiLs point ,we consider the signi ficance of the assurut ion of

--cak ccuin~i temto is un-:oupled, thtn in apin tILemuo ime t: a particle will

diffuse a given amount in the x y plane independent of it,; dlownward

motion, Actuallty thc part ic ls move in a c uyred path t ow.ard lnwer "a ides

of the diffusion coefficient so that the extent of travel in Lhe :,-y

plane is actually less than that obtained under the assumption of no

coupling. Thus, the diffusion front calculated un~der our assumtion of

w eak coupling will have a larger extent in the x y direction than the

true diffusion front. The extent of diffusion along the z axis will be

correct since Equat ion (15) for this mrot ion is exact.

The three. dimensionat di ff usion tquaL ion, may be treat ed from an

alternative point of view. We fir St wx ite Equat ion 13i) in t he form

V- D

and then Fourier transform Eqoation (22) with respect to x and v to obtain



anf n dnf 2 2
(D - .- Vgnf) D -: 12)nf = 0 (23)

where

nr t) ex N yo)(24)

and we have made use of the boundary condition that ,x and ,y

vanish at infinity- We note that for the special case ; 0, the

transformed density function nf reduces to the density aioig the z axis

nI(Z) Hence, the density nI (?) is obtainable as a special case of the

Fourier transform function n We shall work with Fquation (23) rather

than Equation (15) and see to what extent we can solve for the general

three-dimensional density withot appealing to separation of variables

and a perturbation procedure for obtaining the" diffusion in the horizontal

plane,

At this point, it is convenient to express our equations in dimension

less form; we therefore set

r = /t (25)

t'= t/T

where L and T are characteristic units of length and time and write

Equation (22) in the form

- z:- D g - -c- = (26
t' L x2 2

12



The Fourier transform of Equation (26) with respect to x' and y

yields in place of Equation (23)

8nf T a D f f ,2 2 (27)
e te, (D L z- L vgnL gf h L + V ) nf

nf = f 1 (rt ') exp [i(x'. + y7 )ldx' ' (28)

We shall tako the z axis as positive upward so that the drift velocity

v in Equation (27) is negative We therefore replace v by u whereg g g

u is positive. ft is also convenient to express u in terms of D by
g g

noting that, from elementary kinetic theory

2
1 v(29)O = - v _. 7(9

3 3I

where v is the mean thermal speed and . the mean free path Since u
g

from Equation (10) = g/-,, it fol[ows that

(30)
V

and is constant for an isothermal atmosphere.

We may then write Equation (2 7 ) in the form

[ fn f 1 2 ,2 =

6C L2 az' 2 f -2 0 (31

13



4 Exponential Distribution

We consider now the analysis of Equation (31) for the case of an

exponential distribution of diffusion coefficient with altitude We

take the origin at the earth's surface and unite

D zPT3- = e (32)

0
where D is a reference value at the origin and Ii is the scale height

U

Since we have a.qsumed an isothermal atmosphere, H will be taken as

.... fferential Equation (31) then becomes

I T fHt
-t'2 exp (z/H- 2 (z/H)(

L vL1

(33)

We note that Equation (33) simplifies considerably with regard to the

coefficients if we take 1i as the unit of length L and H 2/D as the unit
0

of time T; we then have

f'(n 2 n2)[nf (z H 2, - exp (z) T ) nf 0

"Kp(') - (z)22

(34)

2 kT 'I kTNoting that v -- and ii - where m and m are the masses of the
m mag a

foreign gas and the atmospheric molecules; and dropping primes for

convenience for the remainder of Section 4, we may write Equation (34) as

al f 6exp (z) !.6}7--+c an exp (z)(2 + 1 f)n= 0 (35)

where a = -= measures the ratio of the masses
2 iD m

V 0 0 a

1



We now take the Laplace transform of Equation (35) and obtain

d 2 N + (a + 1) D + a - - p xp ) N =n (zo) oxp (-z)

dz

(36)

where N(z,,7,p) J exp (-pt) nf (z ,Tt) dt

and n (z,O) is the initial density distribution. It is convenient to

choose for the initial density distribution a dclta function Th-

corresponding solution for an arbitrary initial distribution can easily

be obtained by using the solution for the delta funct ion as a Green's

function and integrating over the desired distribution We therefore

take initially

1(7 o) = - 6(r - r ) (37)
35 0

H

where n is the total number of particles. We then obtain or the
0

transformed initial condition

n

(,o) 0 6 z - x) 6 (y y) exp ( ix~ + iy 71) (3.

-- O -C

n (z,o) 6 (z z ) cxp (ixo + iyYo.) (38)

f 0

Oiu differential equation then becomes

dp ex" (-z) N
d z 2  "z , .I

dN ~ ~ ~ ~ ~ -ax ) -. a 2 2 (ix -: 6(H0
H 3 e 0 (i o -: y, I  z) 6 (z z o

(39:-

( 3Q



which reduces to

2
dd r 2 -2d2----M + a i - : a . p cxp (_z)I N1 - z z f40%O

2  dz J o
dz 

0

by use of

M -- N exp i (xoF - y ,
n

0

We now change the independent variabie z by - -xp -?/2, to obtain

2dM d 2 2 _ 2 2
- (2a - 1) q- 1 4(a - -p1)M . 1

dC2 d, 0 ~ i -C~

and further introduce

-(a-i)

to yield
9

12 r S19 ( 2 02 - "Idr,2 d - 4p -2' 0 b" 142
2- _ , dC4

where

2 -2 2 2
3 _ a - 1) P

Since = exp (--z/2). Q is defitied for 0 < I 1 We not. define

the analytic continuation of Q into the region I I by Equation *62"

The right-hand side of Equation (42) is zero at -- I so that tqe shall

require Q, its first and second derivatives are continuous at " - 1

and Q - 0 as - This rorresponds to the assumption that thr-

varticle density approaches zero a - Although the physical

sparc Lovers onty pcitive values of z, the pailicle densixy is not

significantly affected by the boundary cornditions at z z 0 until the

majoCity of parCicll, fecLI i, gru;;nd level F'irthermorn. thr pres-n(

of turbulence below 100 km renders invalid any molecular diffusion model

16



below this level and, in addition, the turbulent layer behaves like a

particle sink We, therefore, expect our present solution to be a good

approximation to the actual situation down to the 100 km level.

We now apply the Hankel transform to Equation (42) and obtain as the

final solution in the transformed space
J (s'

10

Q(s,p) = 2 o(3)
O 2s + 4p

where

= J (s,) Q(tp) d' (44)

and we have assumed Q' and rQ o as r . o, - -' Alrhou,;- the acrial

boundary conditions are stated in terms of M. the assumed boundary

conditions imposes no restriction whatsoever, since, if a nor, trivial

solution satisfying the Q boundary conditions is found, t automatically

satisfies the M boundary conditions. By the uniqueness theorem for

solutions of parabolic differentral equations thcn it is guaran-eed to

be the only solution.

We now consider the inversion of Equation (03) to obtain our solution

in the physical space- Performing the inverse Hankel transform, we obtain

SsJI(sr ) J-(sr)

(a-'l) F IuoJsQ(r,p) = 2,°  -a-) _- ds
0 s

2 
+ 

4
p

Q(,p) = i'o -(a+l) ,J (2i-p,) Hz: (2if'Fo) 6(,

10 
3

J+ (2i1 ) H (24\fp-) 0( r ' (45)
P 0 b, U6 ;0 J "

where n is the Heaviside step function, The particle density function N

11



in the p-plane is then

no 0 • a 1+a " _(2i-) H( )(2i 'pr "
N(',p) =- exp i(x o + Y'11) o i H(3  o s((o <

H 3

+ J (20'\P o) H0 ( 2 i r - ,o (46)

Applying the inverse Laplace transform to N(-e,p)

n (,t) N(,p) exp (pt) dp, c o (47)nf( t 2ri Jc

we obtain

r2 2
n + 2a]e-p - [-a i+a - 1

nf(,t) = exp i(XoX -n) oEXPt t

(48)

The particle densityt (r,t) is then given by

1(r, / P exp I(x§ + dcd -
f L

'4:' c "o

472 d',, exp i i(x - Xo )  d-r exp :-i(y Y

M2 
2

0 !-a !-:-a 11o2,
,1, o o eD -  1 ~ (49)

Setting x x cos e, y - = r sin e
0

(50)

O cor = p sin

and using the integrai representation of !., we have

dCX p-It - x ) r d.e exp[-i(y y - 22 1
fm. 0 f T11 2 22

-' o- Yo - "4 - "! 3 a-[)

Ir .Xl J (Ct I  d,

18



2,r

where : o and CY a - I. The particle density N(r,t) may therefore
t

be written as
n 2 2! -

~r I-a .l+a . 1o i j
expiN 22

42 H 3t t o " 4c -a

J ) ( i x - x ) 2 + (y - 2 2 ) (5 [

The integral occurring in Equation (51) is a Hankel transform of

order zero and can easily be evaluated in any particular case As

previously indicated, the one-dimensional solution nI(zt) may be obtained

by setting = o in the solution for n- We then obtain from

Equation (48)

n( _Z-a .l-a exp (52)
p t a-I L

Some useful information concerning the late time history of the

particles may be obtained from the solution for nI(z't) For iarge

values of t, the Bessel function itt Equation (52) may be expandrd in a

power series; and, upon retention of the leading order term, we obtain as

the asynptotic solution for n1 (z,t)
n .2 a e p 2 2

n(z 't) - F(a) ( ( 22) (52a)
H t

The exponential funct.or, is close to unity for large t so that dependence

of the density function n] upon z and t occurs only through the sinie
2

variable -_ The altitude z is related to the time t by
t

-2
exp (-.z) = ct (52b)

19



where c is a constant which depends upon the density n1 and parameters

a, H, and z We shall find Equations (52a) and (52b) useful in interpreting

the results of the calculations.

20



5. Parabolic Model

We examine now the case where the diffusion coefficient is a parabolic

function of altitude; it is convenient to write the diffusion copfficient

in the form

9

D b (53)
D 1  .,b/

where b is the altitude at which the gas is released and D, is the reference

value of D at thaL altitude. Substituting Equation (53) in Equation (31)

yields

*nn T 2.
n2f -Lz 2 nf4 -

2 -  =0 4)
Ct 2  2  Z' Z 

+z' 2 f v n.

Parallel to the analysis for the exponential case, we now choose b for
b2

the unit of length L and L as the unit of time T; we may then write

Equation (54) in the form

Inf / 3nf _5 2f 2
--- f 3& ,2 2 ,2 2

t +  hz n -z + ' 0 (55)

If we apply the Laplace transformation to.Equation (55), the

inhomogeneous term of the resulting ordinary differential equation is a

delta function, Because of some difficulty in finding the correspanding

Green's furl Lion, we have explored the use of the Lagrange variable

z

h f nfdz, (56)

for which the inhomogeneous term is a step function Because of the

21



presence of the , and V' terms in Equation (55), however, the transformed

equatic.i ic an integral rather than differential equation- We have there-

fore restricted ourselves in the present analysis to the density function

nl(z,t) along the z axis. Setting = 0 in Equation (54) and

integrate with respect to z', we obtain

Th 2. 2 2 0

,-)t z 2  v bz (57)

where

z

h f n(z',t)dz' (58)

and we have imposed the boundary condition that the flux vanishes at

z = 0

Applying the Laplace transform to Equation (57) and omitting primes

fr the remainder of Section 5 yields

222 b 2 H
z - z2 pH -h(z,o) (59)3z 

2  V 2

where

H f h(z,t) exp (-pt)dt (60)

0

and h(z,o) is the initial distribution in terms of h, An exact solution

of Equation (59) leads to hypergeome-ric functions which introduce some

difficulties in obtaining the Laplace invetsion We have, therefore,
2 8

simplified Equation (59) by approximating z in the - (drift velocity)
az

term by a'z where a is a suitable aveiage of z over the interval- Since

22



we are interested in values of the altitude above 100 km, we expect the

approximation to be a useful one, We may then write Equation (59) as

z 2 3H+ z M - pH = h(z,o) (61)
Az-

where b . Solving Equation (61) for the complementary function H

we obtain

H = Az -Bz (62)
0

where mI and m2 are given b-I

m = c +fc + p

m2 =c c2 + p (63)

and c 2 For the initial distribution, we choose a delta function
n

at z b1, -- (z - 1) The corresponding Lagrange function h is then the

Heaviside step function e(1). A particular solution H of Equation (61)
p

for this inhomogeneous term is

n

H = (1) (64)
P p

and the complete solution H = H + H is then
0 p

mI m2
H =Az + Bz , z I

m I m2  n
H Cz Dz + z > 1 (65)

p

where we have used different constants in the two regions because of the

step function at z 1.

We consider now the boundary conditions for our problem. We shall

23



plac:e perfect reflectors at z = 0 and at an upper level z =d and there-

fore require zero flux at these locations. From Equations '61) and (64)

the flux F is given by

I= constL(n n 0-() (66)

In addition, we shall make use of the continuity of n (z,t) and hence of

h(z,t) ane( H(z,p) for t '0 at z I-.1 Since the real part of tie parameter

V is posilrive, thle exponent m2 in Equation (65) is negative We therefore

require the coefficient B in Equation (b)) to vanish to avoid an infinite

solution at z ~.Application of our boundary and centinuity conditions

then yields

(67)

0 n } 1_q q 2
p p 2 qd z 2z) c q -

2 -

2 2where q c + p

The inverse Laplace transform of H may then be obtained from a

standard table of inverse Laplace transforms. Several of the inverse

transforms are expressed as Faltung integrals which can be related to

error furctions by

t

f exp (-a7) exp iP -\/ Fxp (2'a rc -Vat)

-exp (-2 j .b) Eric -2f -%/Vat)J (68)
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Similar relations involving higher powers of'~- may be obtained from

Equation (68) by differentiating with respect to b~ The particle density

n I(z,t) is then obtained from h(z,t) by

The results obtained may be expressed as follows:

for z<1

n 0(4 . (69)

1 2 3 4

L) I' 2 \ !irfc (a+ ) rfc (a / a)

2 o 1 c

-c f c(a +-a) E-Efca2  (a1)

I4 Erc a -rfc (a + a,)

I Erc ( + Erfc (a2 - a)
z z

.~ z) (.Erfc (ao Erfc (a a)

ri 22 2 1)2J (di 2)2
( c Lexp [-(ao -a exp (

-c Eifc (a + a)I+ c rfc (a a)I

-icErfc (a2 + a1 )+ Erfc (a2  a1
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z z S/7t x F- (z 2 -c C,exp (a 2 -a 1 )2

-~Eric (a2 + a) + Erfe (a a
zc z 2a)

2 n1

0 /t z~

a 1 =

2 1

2 4t -- z

for z > 1,

n 04 K z J (70)

iw-hcre

j =Ji + i'
11 2134' 2 2

J3 Z-c Erfe (,1 2- a) z- Erfc (a 2 1 + a.

4 z Erfc (a 2 1 a) + z Erfc (a 2 ' - a)

z z~

3 
13

2 -c - Erfc (a- + a1  - 1 Erfc (a2  a)
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-c 1 2j c 21z -c/" exp e(2 al) ex ,

= v- 1 -(2 a1z t .c / t .

+._ Erfc (a' - a) C Erfc (a2 f - a

z 
z

12 1
a2  =l n za2 'Lt

Although the solution for the parhnlir r- has :? cplcated

analytic form, the asymptotic solution for large t is -ufficiently simple

to draw some interesting and useful conclusions, The form of the solution

depends critically upon the value of c; for c positive the leading order

term depends upon z but not t; while for c negative, the time-independent

leading order term cancels out and the solution becomes time depenident

The results obtained for these two cases may be expressed in the form

n1  
2c 2 c--l

n d2c z , c > 0 (71)

nl I<
-= const. -- exp (ct), c 0

0 zt

For c > 0 the solution is in the form of a power law distribution of the

particle density with respect to altitude. This result is due to the

approximation in the drift velocity term; if the approximation had not

been made, we would have obtaied an exponential behaviour similar to

that obtained in Refence 3. ibis is not a serious error, however, since

we are not interested in the region z close to zero. We may see the

effect of our approximation more closely by directly solving the
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differential equation for large t. Noting that the time derivative

becomes negligible for large t, we may write Equation (54) in the form

S(2 nl _2b 2N 0 (72)

2;-z z . z(72-0,

V

which, upon noting that the flux vanishes for large t, may be integrated

to

2n gb 2
z n, = 0 (73)

If we approximate z in the drift velocity term by nz, we obtain

2 dn
z dz z n I

- - (74)
nd1= Az

.d

Using no = j nldZ to evaluate the constant A, we obtain

d1-

so that

n - 2c 2c--1

n d d2 c (75)

in agreement with Equation (71). if we do not make any approximation

in the drift velocity term, however, we obtain

2 dn1  3eb 2z ..... .d --- z nl
dz

v

n1 = const. exp [_ bz (76)
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which is an exponential distribution similar te that obtained in

Reference 3 for the case of constant D and constant u
g

The case of no gravitational field (.3 = 0, c = 1/2) yields a

particularly simple result Setting g = 0 in Equation (73) or directly

from Equation (75), we obtain, as anticipated, the uniform distribution

-= (77)
n d

The case c = 0 is not directly obtainable from Equation (73) since

the dropping of the time derivative is not valid here in the neighborhood

of the origin. This behaviour may be seen clearly from Equation (71)

where we note that n. i 0 for large t except near z = 0 We thus have aI

piling up of particles at z = O;and since the total number is constant,

a delta function distribution is obtained for t = -- This result is

not of great significance since it is due to our approximation for the

drift velocity term. It does show, however, that in a situation where

the gravitational field becomes significantly larger than the diffusion

effect, such a pili.g up of material may be expected
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6- Results

Because of the greater simplicity of res:ults and bc-caUse Of more

immediate applicability to the physical atmosphere, we have confined our

numerical calculations to the exponentiL-._ model In -iddition wc h -vc

restricted ourselves in the presevnt investigation to the one dimenszional

density function n I(z,t). Numerical calculations for the thre e dirmt-

siomal density function (r,t) will be preseoated in a futu ie invest;,-,

tion. The density function nI(z,t) is preS(-i:(-d as a function o' -ilii
D

tude z11] for sevetal values of the time L~ and the m,-;- ratio -3 in

Figures .1through 4. The scale height Hl was tLkt'n 3- 20 'km and altitude
z

of release as 20 'nip fi~i'roq 5how that the density profilic bcC ;:Lr

increasingly narrow as a increases, and the maxiimuLm valuGe of n I incies)se-

with a These results m-ay bc anticipated in view of the zw;311er momentuim

changes and consequent lesser disDCrsion of the heavier imarticir-Q 1h P

time taken for a given profile to descend to -a given altitude is easily

obtained from the figures. As an example, for a =I (Figurie 1H, it talce
D_

about 10O units of -~ t for an injection at 400 km to descend to the

H 2  
12.

100 km level. For a representative v-alue -of D 400 cm /sec. the

corresponding physical time is 10 8sec or about three yeurc a3 reason-

able result.

The most strihling feature of the density profille is its -hiftins: by

a constant amount as the time p-arameter changes, tlho piofile remaining

aPP~l-S fi~e 11ini4ia'. ume pr-icoo

required to establish the profile, -all particles mcove withi the samec

velocitv. These results hqxue been obtained previously in the tiumerical

of Lr.:'SLCA a;-- Davis



OJDC1 -510

0-1

50 201 0 53

10- 3

IC)-4

orSz']l ~ttso
wI



OIDCI-520

102 10 10-i6' j0-8= Do t

10- 3

0

>- 10- 4 I
U,iz

10-

10-6

10. _

17
5 10 15 20 25 30

ALTITUDE (z/H)

iigure 2. Particle dnsilt ci a function of altitude
IL

o

for seve."i Values of time - t;. iss Lio d - 2.



OIDC -530

0

o-4

w .
w

-5

10-6

50 520 25 3

ALTI TIMF (7,-IHl

Figure -3. ikirticie dcna;iLy func.:tionl 0- as it fuui t0 of al'Iu
0

forsevral vtlu-sof me t ; maiss ratio. a . 5.

33



OIDG-540

to -2 fo-4 o- 6 10-8 009.

10-
2

to-3 5-

0

£

10 
-
6  

-

10
-
7

L I

1 0 - _ _ i ._ I L .. -------. .. I

5 to b 20 25 30

ALTITUDE (z/H)

i.ug-e 4. Particle dscisL(v fun I as a fuic t i on of a 1t tude
0

for severl values of time i t; mass ratio 1 v 10.

34



The development of a constant profile and its consequences are

easily obtainable from the relation between r and t given by Equai.ion (52b'

Fora fixed value of c, we may write this relation in the form

t z = In 2  (78)z 2  L nt

where z2 and z are typical altitudes and t2 and t I the corresponding
t2

times. For our calculations, the ratio of two consecutive times -
t1

has been chosen as 100 so that the corresponding difference zI z2

=-n 100 = 46. A check of Figures I through 4 shows that the altitude

difference between corresponding points on adjacent profiles is always

about 4.6 units. The time required to establish a constant profile is

easily obtainod fro F----i 52. Since thf cd ueni 0 o this

Bessel function must be small enough to yield the constant profile

solution given by Equation (5 2 a), the required time must be somewhat

larger than Co'

The velocity of a particle on a typical profile is, from Equation (52b)

dz 1 (79)
di ex:p(-z)

so that the velocities of two particles characterized by the same time,

i e. belonging to the same profil, are equal We also note that, since

the expression for the velocity can be written in terms of t only,

particles characterized by different masses will have the same limiting

velocities although the corresponding altitudes will be different. This

result may easily be seen by noting that all points on a profile have the

same veloity. This vclocity is, therefore, obtainable from the velocity



at maximum concentration which is entirely a drit velocity and, there

fore (see Equation (10;) is independent of mass.

If we writc Equation (52b) in the form

z ,nc 'at ~

we see that a plot of z against ,nt for a fixed value of c sbould resuit

in. astraigL line. Since the constant c enters as an additive termt,

lines characterized by .,.f-rcnt values of a will be parallel Lc each

other The constant c takes on a particularly simple form if the maximum
2

value of nlis used in Equation (52a) For thiq case. = a so that here
t

c = a and the lines in the zvs'knt plot are now characterized by different

values of a. This anticipated result is verified in Figure 5 where we have

plotted on semi-log paper the time-altitude history for several values of

a of the maximum concentration points of the profiles in Figures I through

4,

The initial distribution chosen by Banister and Davis for their

investigation was a step function; for our case, a delta function was

used It is easy to show that the foregoing results are independent of

the initial distribution- For a delta function, initial distribution

6(z - z ) the corresponding solution is the Green's function G(z,zot)-

Using the properties of the Green's function, we may write the solution

n1 (z,t) correspondin6 Lo any arbi,:rary initial distribution f(7) in the

form
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J f(z) G(Zz zt) dz (81)

o -

-.-. 6 Equ.Liuu (52-a) we note that for iarge L, G splits into a product

of a function F of z and t and a function of z
01

C(Z'Z ,t) F(z,t) cp(z)0 (82)

We then have for large t,

- F(z,t) z ) f(z ) dz (83)
0 0- 0

n (Z ,t)

- A F(z,t) (83a)
0

where

A f ] ,(z f(z ) dz (83b)

depends only on the parameters H and a, Thus, the solution retains the

same analytic structuro in the region of interest, independent of the

initial distribution.
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